tional level. However, this model is not consistent with the published oxygen-argon relaxation times. The "sum" rate expression, rate =  $k([{}^{32}O_2] + [{}^{36}O_2])^2$ , which also adequately represents the observed exchange rates, is a consequence of a two-level vibrational excitation model in which it is assumed that the rate of populating a critical vibrational level determines the rate of exchange. This model is consistent with the published oxygen-oxygen relaxation times but not with the oxygen-argon relaxation times.

The evidence for a vibrational excitation restriction in bimolecular exchange reactions is now impressive. Whereas shock tube data were instrumental in directing our attention to this mechanism, we have now independently demonstrated, on the one hand, that at room temperature vibrationally "hot" molecules produced by chemi-excitation readily exchange atoms,<sup>35</sup> and on the other, that when vibrationally cold molecules collide

(35) T. Baer, Ph.D. Thesis, Cornell University, Ithaca, N. Y., 1969:

with high relative kinetic energies (in center of mass coordinates, as in molecular beams) no exchange occurs.36

Acknowledgments. This work was supported in part by the AFOSR, Contract No. AF49(638)-1448. Also, we wish to thank Dr. Chava Lifshitz for writing the early versions of Program SHOCK and FUNCT and Mrs. Sally Jack for subroutines LISTSQ and EQSOL used in program POLYSQ. We sincerely thank Miss Marcia Williams for supplying us with a revised card deck of the CAL Kinetics Program (compatible with the IBM 360/65) and Dr. H. Henrici for his help in running the program. H. F. Carroll wishes especially to thank Dr. Assa Lifshitz for unselfishly giving his help and advice.

## Appendix

Input data and bimolecular rates constants for set A-H are given in Table VIII.

(36) S. B. Jaffee and J. B. Anderson, J. Chem. Phys., 49, 2859 (1968)

# Reactions of Oxygen Fluoride in Shock Waves. I. Kinetics and Mechanism of Oxygen Fluoride Decomposition

## M. C. Lin and S. H. Bauer

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14850. Received July 1, 1969

Abstract: The thermal decomposition of  $F_2O$  was studied in a single-pulse shock tube over the temperature range 770-1390°K. For temperatures below 1000°K these results are in excellent agreement with the previous shock tube data; however, all rates obtained by conventional techniques, either in static or in flow systems, prove to be higher than those derived from the shock tube techniques. This is attributed to surface effects which cannot be avoided in conventional systems. Our present data are accounted for by the following scheme;  $F_{2}O + Ar \rightleftharpoons F +$ OF + Ar (1, -1), 2OF  $\rightarrow$  2F + O<sub>2</sub>(2), 2F + Ar  $\rightleftharpoons$  F<sub>2</sub> + Ar (3, -3), with  $k_1 = 10^{17.3 \pm 1.0} e^{-(42.5 \pm 4.1)/R^T}$  cc/mole sec and  $k_2 = 10^{12.10 \pm 0.12}$  cc/mole sec. The reverse reactions (-1) and (-3) cannot be neglected even in the early stages of reaction. The bond dissociation energy, D(FO-F), was found to be 42.7 ± 4.1 kcal/mole, on the basis of the RRKM theory. The mechanism of the  $F_2O_2$  decomposition is also discussed.

There are still uncertainties with regard to the kinetics and mechanism of the  $F_2O$  decomposition. The products of decomposition were found to be mainly F2 and O<sub>2</sub>. The rates of the overall pressure changes are consistent with the following stoichiometry.<sup>1</sup>

$$F_2O \xrightarrow{rov} \frac{1}{2}O_2 + F_2$$

The activation energy for the overall process obtained by various methods, including the present study, is within the range  $35 \pm 5$  kcal/mole.<sup>2-5</sup> This value was believed to be associated with the rate-controlling step

$$F_2O + M \xrightarrow{1} F + OF + M$$

Furthermore, it was postulated that the radical reactions which lead to the formation of  $F_2$  and  $O_2$ 

$$2OF \xrightarrow{2} O_2 + F_2 \text{ or } 2F$$
$$2F + M \xrightarrow{3} F_2 + M$$

take place with little or no activation energy. The presence of F atoms and of OF radicals was demonstrated in the photochemical reactions of  $F_2O.^{6,7}$  It is thus reasonable to assume that the thermal decomposition of F<sub>2</sub>O follows approximately the above scheme, including reactions 1-3.

All previous pyrolysis data were analyzed on the basis of this mechanism, with the assumption that reaction 2 was so fast that all reverse reactions were negligible, and accordingly that the observed overall rate constant,  $k_{ov}$ ,

7737

W. Koblitz and H. J. Schumacher, Z. Phys. Chem., B25, 283 (1934).
 L. Dauerman, G. Salser, and Y. A. Tajima, J. Phys. Chem., 71, 3999 (1967); their A factor should be multiplied by 10.
 J. A. Blauer and W. C. Solomon, *ibid.*, 72, 2307 (1968).

<sup>(4)</sup> W. C. Solomon, J. A. Blauer, and F. C. Jaye, ibid., 72, 2311 (1968).

<sup>(5)</sup> J. Troe, H. Gg. Wagner, and G. Weden, Z. Phys. Chem. (Frankfurt am Main), 56, 238 (1967).

<sup>(6)</sup> R. Gatti, E. H. Staricco, J. E. Sicre, and H. J. Schumacher, ibid., 35, 343 (1962); 36, 211 (1963).

<sup>(7)</sup> I. J. Solomon, A. J. Kacmarek, and J. Raney, J. Phys. Chem., 72, 2262 (1968).

was essentially  $k_1$ , the second-order rate constant for the  $F_2O$  dissociation. Operationally,  $k_{ov}$  is defined by

$$k_{\rm ov} \equiv \frac{1}{[\mathbf{M}]t} \ln \frac{[\mathbf{F}_2 \mathbf{O}]_0}{[\mathbf{F}_2 \mathbf{O}]_t} \tag{1a}$$

or equivalently

$$k_{\rm ov} = \frac{1}{[M]t} \ln \frac{[F_2O]_0}{[F_2O]_0 - 2[O_2]_t}$$
 (1b)

where [M] is the total concentration of the reacting system. There are no published data for reaction 2. The rate constant for the analogous reaction,  $2OCl \rightarrow O_2 +$ Cl<sub>2</sub> (or 2Cl), was reported to be  $\sim 10^{11}$  cc/(mole sec).<sup>§</sup> If one employs  $k_2 = 10^{11} \text{ cc/(mole sec)}$  and allows for the reverse reactions -1 and -3, one finds that the calculated yield of oxygen is considerably lower than the observed value. In this paper the importance of these reverse reactions is examined. More data were obtained (in a single-pulse shock tube study) and these underscore the conclusion that neglect of the reverse reactions was not justified.

#### **Experimental Section**

Apparatus. The experiments were carried out in a 1-in. i.d. Pyrex shock tube. Helium was used as the driver gas. The driver section was "tuned" for each temperature to produce the best pressure trace. The diaphragms were of Mylar; their thickness ranged from 0.25 to 1.0 mil. Before each shock the driver section was evacuated to  $\approx 1 \ \mu$  and the driven section to lower than  $5 \ \times \ 10^{-5}$ Torr. The leak rate was found to be significantly less than  $1 \mu/\text{min}$ . Since F<sub>2</sub>O reacts rapidly with mercury, a calibrated Bourdon gauge was employed to measure the initial pressure,  $P_1$ .

Materials. F2O was obtained from Allied Chemicals. It was purified by trap-to-trap distillation (at least twice) from -160 (an isopentane slush bath) to  $-196^{\circ}$ . The middle two-thirds of the distillate was finally collected in a black-painted storage bulb. Kel-F grease was used for all stopcocks. F2O is known to be one of the most toxic compounds. The glass vacuum system in which the samples were prepared was built inside a hood, and connected to a very efficient vent. The shock tube and its vacuum manifold were also vented to the outdoors. CP grade CO as obtained from Matheson was introduced into a storage bulb through two liquid nitrogen-cooled traps; no further purification was performed. Ultrapure Argon (from Matheson) was used for the carrier gas.

Analysis. The reactants and the reaction products were analyzed via mass spectrometry. The products of reaction were confirmed to be mainly F2 and O2. Only oxygen was determined quantitatively. The calibration for oxygen was done by measuring the peak height (ph) of <sup>32</sup>O<sub>2</sub> relative to those of <sup>36</sup>Ar and <sup>40</sup>Ar for the different O<sub>2</sub>-Ar mixtures of known compositions. The results of these calibrations are:  $[O_2]/[Ar] = (5.556 \pm 0.036) \times 10^{-3} ({}^{32}O_2/{}^{36}Ar)_{ph}$ and  $[O_2]/[Ar] = (1.673 \pm 0.010) ({}^{32}O_2/{}^{40}Ar)_{ph}$ . The average of the two measurements was taken to be the final value for the  $[O_2]/$ [Ar] ratio. The results obtained from the decomposition of  $F_2O$ are given in Table I.

### **Calculations and Results**

Evaluation of  $T_0$  and  $P_5$ . The temperatures and pressures behind the reflected shocks were calculated according to the standard shock equations assuming no reaction either in the incident or reflected shock regimes. In this case, no corrections were made for the temperature changes during the reaction (contrast ref 9), since the heat of reaction for  $F_2O \rightarrow \frac{1}{2}O_2 + F_2$  is only -5.9 kcal/mole.<sup>10</sup> Cooling corrections for both  $T_5$  and  $P_5$ 

(8) (a) G. Porter and F. J. Wright, *Discussions Faraday Soc.*, 14, 23 (1953); (b) F. J. Lipscomb, R. G. W. Norrish, and G. Porter, *Nature* 174, 785 (1954); (c) M. A. A. Clyne and J. A. Coxon *Proc. Roy. Soc.* Ser. A, 303, 207 (1968), and other papers cited therein.
(9) M. C. Lin and S. H. Bauer, J. Chem. Phys., 50, 3377 (1969).

(10) R. C. King and G. T. Armstrong, J. Res. Nat. Bur. Stand. A, 72, 113 (1968).

Table I. Results of the Decomposition of OF<sub>2</sub> in a 1-in. Single-Pulse Shock Tube

| Mixture*101K $\mu$ sc $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ $10^{-10}$ | Mixtureª | P <sub>1</sub> ,<br>Torr | ₽₅,<br>Torr | <i>T</i> ₅,<br>°K | Dwell time | 10 <sup>3</sup> [O <sub>2</sub> ]/[Ar] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|-------------|-------------------|------------|----------------------------------------|
| I         16.2         1890         810         956         0.405           I         10.6         1750         965         780         8.20           I         9.3         1930         1085         614         27.0           I         8.0         1820         1150         577         24.7           I         7.2         2190         1367         650         28.6           I         8.0         1890         1080         954         30.8           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1205         628         4.59           II         6.9         1800         1305         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46                                                                                                                     |          |                          |             |                   | μsec       |                                        |
| I         10.6         1750         965         780         8.20           I         9.3         1930         1085         614         27.0           I         8.0         1820         1150         577         24.7           I         7.2         2190         1367         650         28.6           I         8.0         1890         1080         954         30.8           I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1390         586         4.42           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         9.3         1920         1208         860         5.22                                                                                                                     | I        |                          |             |                   |            |                                        |
| I         9.3         1930         1085         614         27.0           I         8.0         1820         1150         577         24.7           I         7.2         2190         1367         650         28.6           I         8.0         1890         1080         954         30.8           I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         10.4         1840         1103         588         3.89           II         6.9         1800         1390         586         4.42           II         0.1         1890         1150         535         3.72           II         8.0         1900         1030         586         4.42           II         0.1         1890         1150         535         3.72           II         8.6         1800         1220         860         5.22           II         10.0         1880         1050         824         3.94                                                                                                                      |          |                          |             |                   |            |                                        |
| I         8.0         1820         1150         577         24.7           I         7.2         2190         1367         650         28.6           I         8.0         1890         1080         954         30.8           I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1390         586         4.42           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         9.3         1920         1208         860         5.22           II         10.0         1880         1150         824         3.94 <td></td> <td>10.6</td> <td></td> <td></td> <td></td> <td></td>                                                   |          | 10.6                     |             |                   |            |                                        |
| I         7.2         2190         1367         650         28.6           I         8.0         1890         1080         954         30.8           I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         8.3         1760         1205         628         4.59           II         6.9         1800         1390         586         4.42           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         9.3         1920         1208         860         5.22           II         10.0         1880         150         824         3.94 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                       |          |                          |             |                   |            |                                        |
| I         8.0         1890         1080         954         30.8           I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1390         586         4.42           II         0.1         1890         1150         535         3.72           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         9.3         1920         1208         860         5.22           II         10.0         1880         1055         824         3.94           II         12.8         1910         1007         2.86      <                                                                                                                     |          |                          |             |                   |            |                                        |
| I         13.3         1950         910         984         32.0           I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1305         667         4.73           II         0.1         1890         1150         535         3.72           II         8.0         1940         1335         567         4.46           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.0         1920         1208         860         5.22           III         10.0         1880         1150         824         3.94           II         10.9         1880         1085         682         5.12           II         1.4         1910         1067         660         3.                                                                                                                | I        |                          |             |                   |            |                                        |
| I         11.2         2360         1103         790         16.4           I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1390         586         4.42           II         6.9         1800         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         8.6         1800         1220         765         4.46           II         8.9         1860         1220         860         5.22           II         10.0         1880         1150         824         3.94           II         12.8         1910         1000         1070         2.86           III         14.4         1910         1067         660         3.37           II         16.5         1930         832         1092 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                 |          |                          |             |                   |            |                                        |
| I         8.5         1960         1162         635         22.4           I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         6.9         1800         1205         628         4.59           II         6.9         1800         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         8.9         1860         1220         765         4.46           II         8.9         1860         1220         765         4.46           II         9.3         1920         1208         860         5.22           II         10.0         1880         1150         824         3.94           II         2.8         1910         1000         1070         2.86           III         1.4         1910         1067         660         3.37           II         10.9         1880         1085         682                                                                                                                         |          |                          |             |                   |            |                                        |
| I         11.2         2210         1065         540         14.4           II         10.4         1840         1103         588         3.89           II         8.3         1760         1205         628         4.59           II         6.9         1800         1390         586         4.42           II         8.0         1940         1335         567         4.73           II         10.1         1890         1150         535         3.72           II         8.6         1800         1220         765         4.46           II         9.3         1920         1208         860         5.22           II         10.0         1880         1150         824         3.94           II         8.9         2020         1280         1045         4.35           II         12.8         1910         1000         1070         2.86           III         11.4         1910         1067         660         3.37           II         10.9         1880         1085         682         5.12           II         8.6         1930         835         1092                                                                                                                     |          |                          |             |                   |            |                                        |
| II $10.4$ $1840$ $1103$ $588$ $3.89$ II $8.3$ $1760$ $1205$ $628$ $4.59$ II $6.9$ $1800$ $1390$ $586$ $4.42$ II $8.0$ $1940$ $1335$ $567$ $4.73$ II $10.1$ $1890$ $1150$ $535$ $3.72$ II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $11.4$ $1910$ $1007$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.175$ III $13.3$ $1880$ $990$ $10000$ $0.824$ III $12.0$ $1940$ $1065$ </td <td></td> <td>8.5</td> <td>1960</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                |          | 8.5                      | 1960        |                   |            |                                        |
| II $8.3$ $1760$ $1205$ $628$ $4.59$ II $6.9$ $1800$ $1390$ $586$ $4.42$ II $8.0$ $1940$ $1335$ $567$ $4.73$ II $10.1$ $1890$ $1150$ $535$ $3.72$ II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ III $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1024$ $0.175$ III $13.3$ $1990$ $1020$ $9.77$ $1.03$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $106$                                                                                                                                                                                                                                                                                                                                                                     |          |                          | 2210        |                   |            |                                        |
| II $6.9$ $1800$ $1390$ $586$ $4.42$ II $8.0$ $1940$ $1335$ $567$ $4.73$ II $10.1$ $1890$ $1150$ $535$ $3.72$ II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $16.6$ $1910$ $900$ $1020$ $0.175$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $1$                                                                                                                                                                                                                                                                                                                                                                     |          | 10.4                     |             |                   |            |                                        |
| II $8.0$ $1940$ $1335$ $567$ $4.73$ II $10.1$ $1890$ $1150$ $535$ $3.72$ II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.175$ IIII $13.3$ $1990$ $1020$ $977$ $1.03$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $1065$ $518$ $0.996$ IIII $12.0$ $1940$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                               |          |                          |             |                   |            |                                        |
| II $10.1$ $1890$ $1150$ $535$ $3.72$ II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.175$ III $13.3$ $1980$ $990$ $1020$ $977$ $1.03$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.20$ <                                                                                                                                                                                                                                                                                                                                                                  |          |                          |             |                   |            |                                        |
| II $8.6$ $1800$ $1220$ $765$ $4.46$ II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.175$ IIII $13.3$ $1980$ $990$ $1000$ $0.824$ III $12.0$ $1940$ $1065$ $930$ $1.07$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.6$ $2210$ $815$ $1040$ $1.00$ IV $19.6$ $2210$ <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                              |          |                          |             |                   |            |                                        |
| II $8.9$ $1860$ $1220$ $860$ $4.14$ II $9.3$ $1920$ $1208$ $860$ $5.22$ II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1880$ $990$ $10000$ $0.824$ III $12.0$ $1940$ $1065$ $930$ $1.07$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.6$ $2210$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ $823$ $943$ $1.18$ IV $14.6$ $2060$                                                                                                                                                                                                                                                                                                                                                                       |          |                          |             |                   | 535        |                                        |
| II9.319201208860 $5.22$ II10.018801150824 $3.94$ II8.92020128010454.35II12.81910100010702.86II11.4191010676603.37II10.9188010856825.12II8.8182012136455.68III18.6193083510920.047III18.1189084010270.041III16.519308829580.126III15.2185089810700.229III14.618909259930.200III16.0191090010200.150III13.3188099010000.824III12.0191010559561.09III12.0194010655180.996III7.1156012806101.17IV19.7226082310401.03IV18.221081510950.950IV17.4197081510401.00IV16.719208239431.18IV14.6206091710167.12V16.217058359200.364V14.817208658951.06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                          |             |                   |            |                                        |
| II $10.0$ $1880$ $1150$ $824$ $3.94$ II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1880$ $990$ $10000$ $0.824$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.7$ $2260$ $823$ $1040$ $1.00$ IV $18.2$ $2108$ $840$ $1070$ $1.45$ IV $19.6$ $2210$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ <td></td> <td></td> <td></td> <td>1220</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                 |          |                          |             | 1220              |            |                                        |
| II $8.9$ $2020$ $1280$ $1045$ $4.35$ II $12.8$ $1910$ $1000$ $1070$ $2.86$ II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.7$ $2260$ $823$ $1040$ $1.03$ IV $19.6$ $2210$ $815$ $1095$ $0.950$ IV $17.4$ $1970$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ $823$ $943$ $1.18$ IV $14.6$ $21930$ $877$ $1016$ $7.12$ V $16.2$ $1705$ $835$ $920$ $0.364$ V $16.2$ $1930$                                                                                                                                                                                                                                                                                                                                                                        |          |                          |             | 1208              |            |                                        |
| II12.81910100010702.86II11.4191010676603.37II10.9188010856825.12II8.8182012136455.68III18.6193083510920.047III18.1189084010270.041III16.519308829580.126III15.2185089810700.229III14.618909259930.200III16.0191090010200.150III13.3199010209771.03III13.3199010209771.03III12.0194010659301.07III12.0194010655180.996III7.1156012806101.17IV19.7226082310401.03IV18.2218084010701.45IV19.6221081510950.950IV17.4197081510401.00IV16.719208239431.18IV14.6206091710167.12V16.217058359200.364V16.2193087710121.33V14.817208658951.06V<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            |                                        |
| II $11.4$ $1910$ $1067$ $660$ $3.37$ II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $12.0$ $1940$ $1065$ $930$ $1.07$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.7$ $2260$ $823$ $1040$ $1.03$ IV $19.6$ $2210$ $815$ $1040$ $1.00$ IV $17.4$ $1970$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ $823$ $943$ $1.18$ IV $14.6$ $2060$ $917$ $1016$ $7.12$ V $16.2$ $1705$ $835$ $920$ $0.364$ V $16.2$ $1930$                                                                                                                                                                                                                                                                                                                                                                        |          |                          |             |                   |            |                                        |
| II $10.9$ $1880$ $1085$ $682$ $5.12$ II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $12.0$ $1910$ $1065$ $930$ $1.07$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.7$ $2260$ $823$ $1040$ $1.03$ IV $19.6$ $2210$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ $823$ $943$ $1.18$ IV $14.6$ $2060$ $917$ $1016$ $7.12$ V $16.2$ $1705$ $835$ $920$ $0.364$ V $16.2$ $1930$ $877$ $1012$ $1.33$ V $14.48$ $1720$ $865$ $895$ $1.06$ V $13.6$ $1910$ $960$ $962$ $4.14$                                                                                                                                                                                                                                                                                                                                                                                              |          |                          |             |                   |            |                                        |
| II $8.8$ $1820$ $1213$ $645$ $5.68$ III $18.6$ $1930$ $835$ $1092$ $0.047$ III $18.1$ $1890$ $840$ $1027$ $0.041$ III $16.5$ $1930$ $882$ $958$ $0.126$ III $15.2$ $1850$ $898$ $1070$ $0.229$ III $14.6$ $1890$ $925$ $993$ $0.200$ III $16.0$ $1910$ $900$ $1020$ $0.150$ III $16.0$ $1950$ $910$ $1024$ $0.175$ III $13.3$ $1990$ $1020$ $977$ $1.03$ III $13.3$ $1880$ $990$ $1000$ $0.824$ III $12.0$ $1910$ $1055$ $956$ $1.09$ III $12.0$ $1940$ $1065$ $518$ $0.996$ III $7.1$ $1560$ $1280$ $610$ $1.17$ IV $19.7$ $2260$ $823$ $1040$ $1.03$ IV $18.2$ $2180$ $840$ $1070$ $1.45$ IV $19.6$ $2210$ $815$ $1095$ $0.950$ IV $17.4$ $1970$ $815$ $1040$ $1.00$ IV $16.7$ $1920$ $823$ $943$ $1.18$ IV $14.6$ $2060$ $917$ $1016$ $7.12$ V $16.2$ $1705$ $835$ $920$ $0.364$ V $14.8$ $1720$ $865$ $895$ $1.06$ V $13.6$ $1910$                                                                                                                                                                                                                                                                                                                                                                        |          | 11.4                     |             |                   |            | 3.37                                   |
| III         18.6         1930         835         1092         0.047           III         18.1         1890         840         1027         0.041           III         16.5         1930         882         958         0.126           III         15.2         1850         898         1070         0.229           III         14.6         1890         925         993         0.200           III         16.0         1910         900         1020         0.150           III         16.0         1950         910         1024         0.175           III         13.3         1990         1020         977         1.03           III         13.3         1880         990         1000         0.824           III         12.0         1940         1065         930         1.07           III         12.0         1940         1065         518         0.996           III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840                                                                                                           |          |                          |             |                   |            |                                        |
| III         18.1         1890         840         1027         0.041           III         16.5         1930         882         958         0.126           III         15.2         1850         898         1070         0.229           III         14.6         1890         925         993         0.200           III         16.0         1910         900         1020         0.150           III         16.0         1910         900         1024         0.175           III         13.3         1990         1020         977         1.03           III         13.3         1880         990         1000         0.824           III         12.0         1910         1055         956         1.09           III         12.0         1940         1065         518         0.996           III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                       |          |                          |             |                   |            |                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            |                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            |                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 16.5                     |             |                   |            |                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            | 0,229                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            | 0.200                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            |                                        |
| III         13.3         1880         990         1000         0.824           III         12.0         1910         1055         956         1.09           III         12.0         1940         1065         930         1.07           III         12.0         1940         1065         518         0.996           III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895                                                                                                              |          |                          |             |                   |            |                                        |
| III         12.0         1910         1055         956         1.09           III         12.0         1940         1065         930         1.07           III         12.0         1940         1065         930         1.07           III         12.0         1940         1065         518         0.996           III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1040         1.00           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895                                                                                                                |          |                          |             |                   |            |                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |             |                   |            |                                        |
| III         12.0         1940         1065         518         0.996           III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                 |          |                          |             |                   |            |                                        |
| III         7.1         1560         1280         610         1.17           IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                |          |                          |             |                   |            |                                        |
| IV         19.7         2260         823         1040         1.03           IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                          |             | 1065              |            |                                        |
| IV         18.2         2180         840         1070         1.45           IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 7.1                      |             |                   |            |                                        |
| IV         19.6         2210         815         1095         0.950           IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                          |             |                   |            |                                        |
| IV         17.4         1970         815         1040         1.00           IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                          |             |                   |            |                                        |
| IV         16.7         1920         823         943         1.18           IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                          |             |                   |            |                                        |
| IV         14.6         2060         917         1016         7.12           V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                          |             |                   |            |                                        |
| V         16.2         1705         835         920         0.364           V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                          |             |                   |            |                                        |
| V         16.2         1930         877         1012         1.33           V         14.8         1720         865         895         1.06           V         13.6         1910         960         962         4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                          |             |                   |            |                                        |
| V 14.8 1720 865 895 1.06<br>V 13.6 1910 960 962 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                          |             |                   |            |                                        |
| V 13.6 1910 960 962 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                          |             |                   |            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                          |             |                   |            |                                        |
| V 14.5 1985 945 947 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                          |             |                   |            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V        | 14.5                     | 1985        | 945               | 947        | 4.15                                   |

<sup>a</sup> The per cents of OF<sub>2</sub> in Ar for mixtures I to V are, respectively, 7.43, 1.17, 0.258, 5.15, and 1.94.

(during the quench expansion) were made on the basis of the adiabatic expansion relation  $P(t)/P_5 = [T(t)/$  $T_5$ ]<sup> $\gamma/(\gamma-1)$ </sup>. The rate of pressure change after the arrival of the cooling wave was determined for each shock from the recorded pressure trace.

Evaluation of  $k_1$  and  $k_2$ . The magnitudes of the overall second-order constant,  $k_{ov}$ , calculated according to eq 1b are shown in Figure 1, together with those obtained from the uv absorption measurements in shock tubes, <sup>3,5</sup> and those from mass spectrometric analyses of the reaction products in a flow tube<sup>2</sup> and static vessels.<sup>4</sup> Our results for  $T_5 \leq 1000^{\circ}$ K are well represented by

$$k_{\rm ov} = 10^{15.8} e^{-37,800/RT} \, {\rm cc}/({\rm mole \ sec})$$
 (2)

The absolute values of  $k_{ov}$  given by eq 2 are in excellent agreement with the shock tube results of Troe, et al.,5

Journal of the American Chemical Society | 91:27 | December 31, 1969

 $k_{\rm ov} = 10^{15.1} e^{-34,200/RT}$  cc/(mole sec), and those of Blauer and Solomon,  ${}^{3}k_{\rm ov} = 10^{14.2} e^{-31,500/RT}$  cc/(mole sec). (This demonstrates again the validity of the single-pulse shock tube technique.) Our results for  $k_{ov}$ were corrected for the extent of reaction taking place during the cooling period, according to the method of Tschuikow-Roux.<sup>11</sup> Figure 1 exhibits another important fact; *i.e.*, all results obtained by the conventional techniques are higher than those derived from shock tube studies by a factor of 5-10. This difference is probably due to surface effects which are inherent in conventional systems. The rate constants evaluated in this investigation for T > 1000 °K, as shown in Figure 1, tend to level off and depart significantly from the linear expression 2. This deviation at higher temperatures is readily accounted for by the proposition that the ratecontrolling step of the decomposition reaction, i.e., step 1, is close to equilibrium.

The following general scheme is proposed, and was employed in the detailed calculations to account for the decrease in the O<sub>2</sub> yield at higher temperatures.

$$F_{2}O + M \xrightarrow{1}_{-1} F + OF + M$$

$$2OF \xrightarrow{2}_{-1} 2F + O_{2}$$

$$2F + M \xrightarrow{3}_{-3} F_{2} + M$$

$$OF + F_{2} \xrightarrow{4}_{-4} F_{2}O + F$$

$$OF + M \xrightarrow{5}_{-5} F + O + M$$

$$O + F_{2}O \xrightarrow{6}_{-6} 2OF$$

$$O + F_{2} \xrightarrow{7}_{-7} F + OF$$

Their relative importance is analyzed below. Reaction 2 probably takes place via the sequence

$$FO + OF \xrightarrow{2a} F-O-O^* + F \quad (fast)$$
$$FO_2^* \xrightarrow{2b} F + O_2 \quad (very \ fast)$$

The exothermicity of reaction 2a is about 30 kcal/mole, Thus FO<sub>2</sub> formed in (2a) is probably vibrationally excited. Since  $D(F-O_2) \approx 7$  kcal/mole,  $FO_2^*$  can hardly survive longer than a few vibrations. The analogous reaction of OCI radicals is believed to take place in a similar way.<sup>8c,12</sup>

In the above reaction scheme none of the rate constants except  $(-3)^{13}$  is known. We had to resort to the generalized Evans-Polanyi rule14 to estimate the activation energies for the atom-transfer reactions 4, 6, and 7

$$E_i = 11.5 - 0.25q_i \tag{3a}$$

$$E_i = 11.5 \pm 0.75a_i$$
 (3b)

where  $E_i$  and  $q_i$  are the activation energy and the absolute value of the heat of reaction, respectively, for step

or

(12) S. W. Benson and J. H. Buss, J. Chem. Phys. 27, 1382 (1957).
(13) D. J. Seery and D. Britton, J. Phys. Chem., 70, 4074 (1966).
(14) See, for example, K. J. Laidler, "Chemical Kinetics," McGraw-Hill Book Co., Inc., New York, N. Y., 1965.

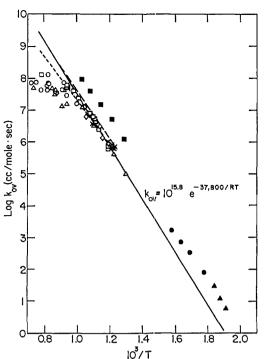



Figure 1. Log  $k_{ov}$  vs. 1/T;  $\triangle$ , mixture I;  $\bigcirc$ , mixture II;  $\square$ , mixture III;  $\times$ , mixture IV;  $\diamond$ , mixture V (all mixtures, this work); •, Solomon, *et al.*; **I**, Dauerman, *et al.*; **A**, Koblitz and Schumacher; --, Troe, et al.; ----, Blauer and Solomon.

*i*. Equation 3a is applicable to exothermic reactions, whereas eq 3b applies to endothermic ones. The preexponential factors for reactions 4, 6, and 7 were taken to be  $10^{11}$  cc/(mole sec).  $k_5$  was estimated according to

$$k_4 \cong \lambda Z \left[ \frac{D}{RT} \right]^{s-1} \frac{1}{(s-1)!} e^{-D/RT}$$
(4)

In the first calculation, a value of  $D(O-F) \cong 45.7 \text{ kcal}/$ mole was employed. The collision efficiency  $(\lambda)$  and the effective degrees of freedom (s) were assumed to be the same as in the  $F_2$  dissociation by Ar. The value for D is given above is the average bond dissociation energy in F<sub>2</sub>O.<sup>10</sup>

The significant rate constants  $(k_1 \text{ and } k_2)$  were evaluated by an iterative method, using an IBM 360/65 computer. The concentrations of all species, as functions of the time, were evaluated by integrating all the differential equations using a Runge-Kutta method, modified according to Treanor.<sup>15</sup> As stated above, since the assumption  $k_1 = k_{ov}$  and  $k_2 = 10^{10.9}$  cc/(mole sec) gave too low a value for the O<sub>2</sub> yield on the basis of the generalized mechanism, our data for  $T_5 \leq 1100$  °K were divided into two groups to evaluate  $k_1$  and  $k_2$ , separately. The results obtained between 1100 and 1000°K are most suitable for determining  $k_2$ , because in this range reaction 1 is about to approach equilibrium and the observed  $O_2$  yield is rather insensitive to the magnitude of  $k_1$ . It is, however, very sensitive to the assigned value of  $k_2$ , since the rate of O<sub>2</sub> production is directly proportional to this constant. Runs with  $T_5 \ge 1100^{\circ}$ K were not used because both reactions 1 and 3 reach equilibrium within the test time.

(15) C. E. Treanor, Technical Report No. AG-1729-A-4, Cornell Aeronautical Laboratory.

<sup>(11)</sup> E. Tschuikow-Roux, Phys. Fluids, 8, 821 (1965).

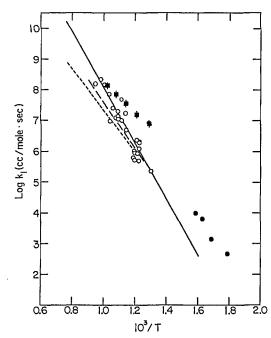



Figure 2. Log  $k_1$  vs. 1/T: O, this work;  $\blacksquare$ , Dauerman, et al., with estimated error range;  $\bullet$ , Solomon, et al.

The first values of  $k_2$  were estimated by fitting the calculated  $O_2$  yields to the experimental results. As a first approximation  $k_1$  was assumed to be equal to  $k_{ov}$ . No temperature dependence was found for  $k_2$  in this narrow range of temperatures. It is, however, not unreasonable to assume  $E_2 = 0$ , since the analogous reaction for OCl was found to take place with little or no activation energy.<sup>8</sup> The average value of  $k_2$  thus obtained was then used to estimate  $k_1$ , employing data for which  $T_5 \leq 1000$  °K. These calculations were cycled twice. No significant changes were found in  $k_2$  in the sequence of calculations. The final values of  $k_1$  and  $k_2$  are given in Table II (also Figure 2) and Table III, respectively. They are best represented by

and

$$k_{\rm e} = 10^{12.10\pm0.12} \, \rm cc/(mole \, sec)$$
 (6)

(5)

The limits of error cited are the standard deviations. The value of  $k_2$  so obtained checks closely with that of  $k = 10^{11.8}e^{-2.500/RT}$  obtained by Clyne and Coxon for the ClO radical reaction.<sup>Se</sup>

 $k_1 = 10^{17.3 \pm 1.0} e^{-(42,500 \pm 4,100)/RT} \text{ cc/(mole sec)}$ 

The rate constants of the remaining reactions were reevaluated after each new value of  $E_1$  or, equivalently, D(FO-F), was obtained. The final values are given in Table IV. In Figure 2, the results of other investigations were replotted for comparison. Those of Dauerman, *et al.*,<sup>2</sup> and Solomon, *et al.*,<sup>4</sup> were recalculated on the basis of the general mechanism. It is evident that at low temperatures, the deviation due to surface effects is considerable. At higher temperatures, however, it becomes negligible, as expected.

Yields as Functions of Time. The rates of disappearance of  $F_2O$  and the formations of various species were calculated according to the proposed general reaction scheme at 770, 1020, and 1390°K, using the rate constants given in Table IV. The results are shown in Figure 3a, b, and c, respectively. In this figure, the rates

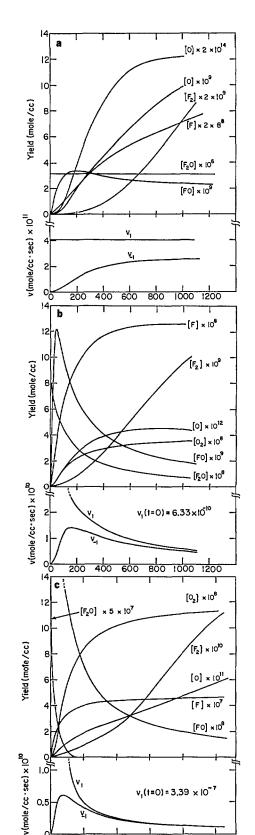



Figure 3. Typical plots of yields vs. time: (a) mixture I,  $T_5 = 770^{\circ}$ K,  $P_5 = 2060$  Torr; (b) mixture III,  $T_5 = 1020^{\circ}$ K,  $P_5 = 1990$  Torr; (c) mixture II,  $T_5 = 1390^{\circ}$ K,  $P_5 = 1800$  Torr.

15

t (μs)

20

of reaction 1,  $v_1 = k_1 [M] [F_2O]$ , and reaction -1,  $v_{-1} = k_{-1} [M] [FO] [F]$ , are also displayed for comparison. From the results which cover the entire temperature range used

Journal of the American Chemical Society | 91:27 | December 31, 1969

|           | <i>k</i> 1                                                |
|-----------|-----------------------------------------------------------|
| Table II. | Rate Constant for $OF_2 + Ar \longrightarrow FO + F + Ar$ |

| Mixture <sup>a</sup> | <i>T</i> <sub>5</sub> , °K | Log $k_1$ , cc/(mole sec) |
|----------------------|----------------------------|---------------------------|
| I                    | 770                        | 5.35                      |
| Ι                    | 810                        | 6.35                      |
| Ι                    | 818                        | 5.70                      |
| Ι                    | 910                        | 7.30                      |
| Ι                    | 965                        | 7.85                      |
| III                  | 835                        | 5.98                      |
| III                  | 840                        | 5.81                      |
| III                  | 882                        | 7.26                      |
| III                  | 898                        | 7.72                      |
| III                  | 900                        | 7.00                      |
| III                  | 910                        | 7.05                      |
| III                  | 925                        | 7.10                      |
| III                  | 990                        | 8.15                      |
| IV                   | 815                        | 6.10                      |
| IV                   | 815                        | 6.30                      |
| IV                   | 823                        | 5.95                      |
| IV                   | 823                        | 6.40                      |
| IV                   | 840                        | 6.00                      |
| IV                   | 917                        | 7.15                      |
| V                    | 835                        | 5.71                      |
| v                    | 877                        | 6.70                      |
| Ŷ                    | 865                        | 6.75                      |
| Ŷ                    | 960                        | 6.90                      |
| v                    | 945                        | 7.45                      |

<sup>a</sup> Same designation as in Table I.

Table III. Rate Constant for  $2OF \xrightarrow{k_2} 2F + O_2$ 

| Mixture | <i>T</i> <sub>5</sub> , °K | $\log k_2$ , cc/(mole sec |
|---------|----------------------------|---------------------------|
| I       | 1080                       | 11.77                     |
| Ι       | 1085                       | 12.28                     |
| II      | 1000                       | 11.97                     |
| II      | 1065                       | 11.97                     |
| III     | 1065                       | 11.90                     |
| III     | 1020                       | 12.65                     |
| III     | 1055                       | 12.17                     |
|         |                            | Av $12.10 \pm 0.1$        |

" Same designation as in Table I.

Table IV. Summary of Rate Constants<sup>a</sup>

| Reaction | A                        | E              | Remarks                                                |
|----------|--------------------------|----------------|--------------------------------------------------------|
| 1        | 10 <sup>17.3±1.0</sup>   | $42.5 \pm 4.1$ | This work                                              |
| -1       | 1015.6                   | 0              | Calcd from $k_1$ and $K_1 = 10^{1.7} e^{-41.7/RT}$     |
| 2        | 10 <sup>12,10±0,12</sup> | 0              | This work. Reverse reaction $(-2)$ is not important    |
| 3        | 1011.8                   | -9. <b>9</b>   | Calcd from $k_{-3}$ and $K_3 = 10^{-1.21} e^{37.2/RT}$ |
| -3       | 1012.5                   | $27.3 \pm 2.5$ | Ref 12                                                 |
| 4        | 1011.0                   | 10.4           | See text                                               |
| -4       | 1011.2                   | 14.7           | Calcd from $k_4$ and $K_4 = 0.67e^{4.3/RT}$            |
| 5        | 1013.0                   | 37.3           | See text                                               |
| -5       | 1011.7                   | -10.0          | Calcd from $k_5$ and $K_5 = 10^{1.3} e^{-47.3/RT}$     |
| 6        | 1011.0                   | 10.0           | See text                                               |
| -6       | 1010.6                   | 16.0           | Calcd from $k_6$ and $K_6 = 10^{0.6} e^{6.0/RT}$       |
| 7        | 1011.0                   | 9.0            | See text                                               |
| -7       | 1010.6                   | 1 <b>9</b> .0  | Calcd from $k_7$ and $K_7 = 10^{0.4} e^{10.0/RT}$      |

<sup>a</sup> Units in cc, mole, sec, and kcal/mole.

in this investigation, one may conclude that the concentration of O atoms is too low to be important even at the highest temperature (1390°K), that reaction -1is comparable to reaction 1 even at the lowest temperature (770°K), and that step 1 soon reaches its equilibrium value at the higher temperatures. The rate of disappearance of  $F_2O$  via reactions other than 1 was found to be negligible at all temperatures.

There is some disagreement with regard to the effect of  $F_2$  on the rate of  $F_2O$  decomposition. Solomon, et al.,4 found an inhibition effect at 563°K, whereas Koblitz and Schumacher<sup>1</sup> reported an acceleration at 532°K. In order to examine the possible effect of  $F_{2}$ , we calculated the rates of disappearance of  $F_2O$  in the absence or presence of  $F_2$  at both temperatures. The results are presented in Table V. In these calculations the collisional efficiency of  $F_2$  for reactions 1 and 3 was taken to be equal to that of  $F_2O$ . In Table V the rate of formation of  $O_2$  and the rates of reactions -1 and 4 are also listed. Reaction 4 is clearly shown to be unimportant in the absence of  $F_2$ . The addition of large amounts of  $F_2$ , however, enhances considerably both reactions -1 and 4, and retards significantly the rate of  $F_2O$  decomposition as well as the rate of  $O_2$  formation both at 563 and 532°K. In order to enhance the rate of  $F_2O$  decomposition, the collisional efficiency of  $F_2$ would have to be at least 1000 times greater than that of  $F_2O$ . This is rather unlikely. We therefore conclude that  $F_2$  only inhibits the  $F_2O$  decomposition by virtue of reactions -3 and 4.

## Discussion

Unimolecular Dissociation of  $F_2O$  and D(FO-F). The mechanism for the decomposition of  $F_2O$  at  $T \leq 1390^{\circ}K$  is essentially represented by the first three steps of the generalized mechanism, and for M = Ar,  $k_1$  is given by eq 5. The second-order rate constant for a unimolecular reaction, on the basis of the RRKM theory,<sup>16</sup> is related to the critical energy,  $E_0$ , by the following expression

$$k_{1} = Z \frac{e^{-E_{0}/RT}}{Q_{v}} \int_{0}^{\infty} \rho(E_{0} + \epsilon) e^{-\epsilon/RT} d\epsilon \qquad (7)$$

where Z is the collision number,  $Q_v$  the vibrational partition function, and  $\rho(E_0 + \epsilon)$  the energy density in the molecule at energy  $(E_0 + \epsilon)$ . In the present case  $E_0 = D(\text{FO}-\text{F})$  but its magnitude is uncertain. However, it can be obtained by interpolation of the theoretical  $E_1 vs$ .  $E_0$  curve.  $E_1$  is the activation energy for reaction 1 and is the overall temperature coefficient of eq 7. By assuming  $\sigma = 4.0$  Å and  $E_0 = 42.7$  kcal/mole eq 7 leads to

$$k_1(\text{calcd}) = 1.1 \times 10^{17} e^{-42,100/RT} \text{ cc/(mole sec)}$$
 (8)

at 1000 °K. The vibrational frequencies of  $F_2O$  were taken from the JANAF Tables.<sup>17</sup> This agreement is excellent, although in the present calculation of  $k_1$  the anharmonicity and centrifugal effects were not included.

On the basis of the above result,  $D(\text{FO}-\text{F}) \cong 42.7$  kcal/(mole sec), and the experimental heat of formation of F<sub>2</sub>O,  $\Delta H_f^{\circ}_{298} = 5.86 \pm 0.38$  kcal/mole,<sup>10</sup> or  $\Delta H_f^{\circ}_{0} = 6.40 \pm 0.38$  kcal/mole. Also

$$\Delta H_{\rm f}^{\circ}{}_{0}({\rm FO}) \cong 30.2 \pm 4.1 \text{ kcal/mole}$$

and

$$D(\text{FO}) \cong 48.3 \pm 4.1 \text{ kcal/mole}$$

(16) R. A. Marcus, J. Chem. Phys., 20, 359 (1952); R. A. Marcus and O. K. Rice, J. Phys. Chem., 55, 894 (1951).
(17) "JANAF Thermochemical Tables," D. R. Stull, Ed., the Dow Chemical Co., Midland, Mich., 1965.

| Table V. | Effect of F <sub>2</sub> on OF <sub>2</sub> Decomposition <sup>a</sup> |
|----------|------------------------------------------------------------------------|
|          |                                                                        |

| <i>Τ</i> ₅,<br>°K | P <sub>F2</sub> ,<br>Torr | P <sub>OF₂</sub> ,<br>Torr | - <i>v</i> <sub>OF2</sub> | $v_{\rm O_2}$         | <i>v</i> _1           | U4                    |
|-------------------|---------------------------|----------------------------|---------------------------|-----------------------|-----------------------|-----------------------|
| 563               | 0                         | 100                        | $1.6 \times 10^{-16}$     | $1.3 \times 10^{-16}$ | $3.0 \times 10^{-18}$ | $3.6 \times 10^{-24}$ |
|                   | 1560                      | 100                        | $5.7 \times 10^{-19}$     | $2.9 \times 10^{-18}$ | $3.4 \times 10^{-14}$ | $1.3 \times 10^{-15}$ |
| 532               | 0                         | 100                        | $2.0 \times 10^{-17}$     | $2.1 \times 10^{-17}$ | $5.3 \times 10^{-19}$ | $1.6 \times 10^{-24}$ |
|                   | 1560                      | 100                        | $4.9 \times 10^{-20}$     | $2.6 \times 10^{-20}$ | $4.7 \times 10^{-15}$ | $2.4 \times 10^{-16}$ |

<sup>a</sup> All rates are in units of mole/(cc sec);  $v_M$  denotes either d[M]/dt or the rate of the Mth reaction, at t = 0.02 sec.

This value for D(FO-F) is substantially higher than that: derived by Troe, et al.,  $^{5} D(FO-F) = 37 \pm 1$  kcal/mole, on the basis of their value  $E_1 = 34.2$  kcal/mole. Their low value for the bond dissociation energy is inconsistent with the relatively higher stability of  $F_2O$  relative: to  $F_2$ . One should expect D(FO-F) > D(F-F).

Mechanism of  $F_2O_2$  Decomposition. The thermal decomposition of  $F_2O_2$  has been studied by Schumacher and Frisch.<sup>18</sup> At -80 to 0° the products are similar to those for the  $F_2O$  decomposition, mainly  $O_2$  and  $F_2$ . The activation energy for the decomposition in its first-order region was found to be  $\approx 17$  kcal/mole. This low activation energy could be accounted for as follows.

$$F_{2}O_{2} + M \xrightarrow{8} F + FO_{2} + M$$

$$FO_{2} + M \xrightarrow{9} F + O_{2} + M$$

$$F + F_{2}O_{2} \xrightarrow{10} F_{2} + FO_{2}$$

$$F + F + M \xrightarrow{3} F_{2} + M$$

The steady-state treatment of this scheme, with the assumption that the reaction chain is long, leads to

$$-\frac{\mathrm{d}[\mathbf{F}_{2}\mathbf{O}_{2}]}{\mathrm{d}t} \cong k_{10} \left[\frac{k_{8}}{k_{3}}\right]^{1/2} [\mathbf{F}_{2}\mathbf{O}_{2}]^{1/2}$$
(9)

Overall first-order kinetics can be reached experimentally when reaction 8 becomes first order. Since reaction 3 is third order under ordinary conditions, in the case of pure  $F_2O_2$ , eq 9 reduces to

$$-\frac{\mathrm{d}[\mathbf{F}_2\mathbf{O}_2]}{\mathrm{d}t} \cong k_{10} \left[\frac{k_8}{k_3^0}\right]^{1/2} [\mathbf{F}_2\mathbf{O}_2] \tag{10}$$

(18) H. J. Schumacher and F. Frisch, Z. Phys. Chem., 24, 332 (1934).

where  $k_{3^0} = k_3[M] = k_3/[F_2O_2]$ . An alternative initiation step has been suggested by Benson.<sup>19</sup>

 $F_2O_2 + M \xrightarrow{11} 2FO + M$ 

This reaction appears less likely on the energetic grounds.  $E_{11}$  was estimated to be as high as 70 kcal/mole. The overall activation energy according to eq 10 is

$$E_{\rm ov} \cong E_{10} + \frac{1}{2}E_8 - \frac{1}{2}E_3$$
 (11)

On the basis of the Evans-Polanyi rule cited previously, and the heats of formation of  $F_2O_2$  and  $FO_2$  recommended by Benson, <sup>19</sup>  $E_{10} \approx 8$  and  $E_8 \approx 24 \pm 10$  kcal/ mole.  $E_3$  is not known in the low-temperature range  $(-80 \sim 0^\circ)$  but probably it is slightly negative. Thus we have  $E_{ov} \approx 20 \pm 5$  kcal/mole, which agrees with the experimental value of 17 kcal/mole. When one considers reaction 11 rather than 8, one concludes that  $E_{ov} \approx 43$  kcal/mole.

In summary, it appears that the mechanisms for the decompositions of  $F_2O$  and  $F_2O_2$  are somewhat more complicated than had been previously assumed. The observed overall second-order and first-order rate constants for the decomposition of  $F_2O$  and  $F_2O_2$ , respectively, should not be taken as those of the initiation reactions.

Acknowledgments. This work was supported by the Office of Naval Research, under Contract No. N0014-67-A-0077-0006.

(19) S. W. Benson, "Thermochemical Kinetics," John Wiley and Sons, Inc., New York, N. Y., 1968.